
Inr. J. Heal Moss ‘Punsfir. Vol 25, No. IO, pp. 1489-1502, 1982 0017-9310/82/10l4s9-14 a3.co/o 

Printed in Great Britain 6 1982 Per@uwn Press Ltd. 

INTERACTION BETWEEN A STREAM WHICH PASSES 
THROUGH AN ENCLOSURE AND NATURAL CONVECTION 

WITHIN THE ENCLOSURE 

E. M. SPARROW and F. SAMIE 

Department of Mechanical Engineering, University of Minnesota, 
Minneapolis, MN 55455, U.S.A. 

(Received 13 November 1981 and in final form 11 February 1982) 

Abstract-An analysis has been made of the fluid flow and heat transfer in a vertically oriented cylindrical 
enclosure in whose lower and upper walls there are small apertures through which fluid passes into and out of 
the enclosure. The throu~flow stream induces a recirculating flow in the enclosure. Furthermore, natural 
convection motions are induced in the enclosure owing to the temperature difference between the entering 
stream and the enclosure walls. The strengths of the forced and natural convection flows are respectively 
characterized by the Reynolds and Rayleigh numbers, and the latter may be either positive or negative 
depending on whether or not the wall temperature T, exceeds the entering fluid temperature T,. When the 
throughflow stream is vertically upward, positive-Rayleigh-number natura1 convection (i.e. T, z ‘I’,) 
opposes the through~ow-driven recirculation and reduces the heat transfer in the range of small and 
intermediate Rayleigh numbers. At high Rayteigh numbers, the throughflow stream is overpowered by the 
natural convection, with resulting high values of heat transfer. For negative Rayleigh numbers (i.e. T, < TO), 

the heat transfer is little different from that for zero Rayleigh number. 

NOMENCLATURE 

diameter of cylindrical enclosure; 
diameter of inlet and exit apertures; 
acceleration of gravity; 
height of enclosure; 
thermal conductivity ; 
dimensionless pressure, equation (3); 
Prandtl number; 
pressure; 
reduced pressure, (p + pOgz); 
surface-integrated heat transfer rate; 
local heat flux ; 
dimensionless radial coordinate, r/D; 
Rayleigh number, equation (5); 
Reynolds number of inflow, equation (1 I); 
radial coordinate ; 
temperature ; 
temperature of entering fluid; 
temperature of enclosure walls ; 
dimensionless velocity components, equa- 
tion (3); 
dimensionless inlet velocity, vzD/v; 

radial velocity component ; 
axial velocity component ; 
inflow velocity ; 
dimensionless axial coordinate, z/D; 

axial coordinate. 

Greek symbols 

BY thermal expansion coefficient ; 
8, dimensionless temperature, {T - T,)/ 

V, - T,); 
V, kinematic viscosity ; 

6% density; 

PO, density of entering flow; 

*9 stream function. 

INTRODUCTION 

THIS paper is concerned with the interaction between a 
fluid stream which passes through an enclosed space 
and natural convection motions which may occur in 
the space, with the natural convection being induced 
by temperature differences between the stream and the 
walls of the enclosure. Problems of this general type 
are widely encountered in the real world. For example 
in the oven of an electric stove there is a throughflow of 
air which usually enters the oven cavity via a slot at the 
bottom edge of the oven door and exits via an aperture 
embedded in one of the burners on the surface of the 
stove. The air entering the oven cavity is at room 
temperature while the walls of the cavity are typically 
at a tem~rature that is elevated by several hundred 
degrees. This temperature difference will induce natu- 
ral convection motions which, depending on the 
velocity magnitudes involved, may influence the path 
of the throughflow stream and the temperature distri- 
bution in the cavity. A second illustration is the 
interaction between the natural convection recircu- 
lation in an attic and the throughflow which enters via 
soffit vents and exits via roof vents. Other examples 
which occur in industrial processes may also be cited. 

The aforementioned examples are iniended to illus- 
trate the class of problems on which attention is to be 
focused, but they are characterized by highly specific 
geometrical configurations and are therefore inap- 
propriate for a general research-type study. A more 
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FIG. 1. Vertically oriented circular cylinder 
throughflow. 

with fluid 

generic problem has been selected to explore the 
nature of the interactions between the throughflow 
and natural convection recirculation. 

The problem chosen for study is illustrated at the left 
in Fig. 1. The basic geometry is a hollow, vertically 

oriented circular cylinder, with small circular aper- 
tures centered in its upper and lower faces. For 
concreteness, the figure portrays a fluid stream which 

enters the cylindrical enclosure via the lower aperture 
and exits via the upper aperture, but the reversed flow 
direction is also covered by the analysis and results. 
The entering fluid has a temperature To, while the 
inner walls of the cylinder are at a different uniform 
temperature T,. The two cases T, > T, and T, < TO 
are dealt with in this paper. 

The problem is governed by several dimensionless 
parameters. Two of these are related to the fluid flow- 
the Reynolds number Re of the throughflow and the 
Rayleigh number Ra of the natural convection in the 
enclosure. There are two geometrical parameters, d/D 
and H/D, respectively the ratio of the aperture dia- 
meter to the cylinder diameter and the ratio of the 
cylinder height to diameter. The fifth parameter is the 
Prandtl number. 

For the analysis it is sufficient to fix the direction of 
the throughflow as shown in the figure and to regard 
the Reynolds number as positive for that direction. The 
Rayleigh number can be either positive or negative, 

depending on the sign of (T, - TO). If the throughflow 
were to be reversed in direction relative to that of Fig. 1, 
the results can be obtained from those presented here 
by reversing the sign of (T, - T,,). Thus, for example, 
the results for an upward throughflow with T,,, > TO 
are identical to those for a downward throughflow 
with T, -c TO. 

Even when natural convection effects are negligible 
(i.e. small Ra), the anticipated pattern of fluid flow 
within the enclosure is quite complex. In particular, the 
throughflow stream gives rise to a large scale re- 
circulatory motion which washes the walls of the 
enclosure. At higher Rayleigh numbers, the natural 
convection flow within the enclosure interacts with the 
aforementioned recirculation and, at still higher Ray- 

leigh numbers, it may interact with the throughflow 
stream itself. Thus, for a given Reynolds number of the 
throughflow, it is of interest to identify the Rayleigh 
numbers at which these interactions occur. 

Furthermore, it is relevant to determine the effect of 
the fluid flow interactions on the wall heat transfer. A 
first impression might suggest that since the condition 
T, > T,, corresponds to a natural convection upflow 

along the vertical (cylindrical) wall, natural convection 
would enhance the heat transfer for an upward- 

directed throughflow, with T, < TO having the 
opposite effect. Such a view, however, neglects the fact 
that the large-scale recirculation that is driven by the 
throughflow actually moves downward along the 
vertical wall. Thus, from physical reasoning alone, 
there is some uncertainty about whether T, > TO or 
T, < TO (i.e. positive or negative Rayleigh number) 
gives rise to heat transfer enhancement. 

Quantitative fluid flow and heat transfer results for 
the problem were obtained from numerical solutions 
performed with an elliptic finite-difference program 

(an elliptic program was mandatory because of the 
recirculating flow). Laminar flow conditions were 

assumed to prevail. For the solutions, attention was 
focused on the effects of the Reynolds and Rayleigh 
numbers for a fixed geometrical configuration. For a 
given value of the Reynolds number, the Rayleigh 
number was varied from - lo6 to 106. The Prandtl 
number was assigned a value of 0.7, which corresponds 
to air. 

Results for the fluid flow and temperature fields will 
be presented in terms of streamline and isotherm maps. 
Distributions of the local heat flux along the walls of 
the enclosure are presented graphically, while the 
surface-integrated heat transfer rates are tabulated. 

ANALYSIS 

Governing equations and parameters 

The problem will be formulated in r, z cylindrical 
coordinates under the assumption of axisymmetry. 
The buoyancy force which drives the natural con- 
vection motion will be derived by rearrangement of the 
body force and pressure gradient terms which appear 
in the z-momentum equation, namely, (- dp/dz - pg). 
If the terms pOg and -peg are added to the contents of 
the foregoing parentheses and if p’ = p + pOgz, there 
follows 

- dp/cYz - pg = - dp’/l?z + g(po - p). (1) 

If the Boussinesq equation of state, (p,, - p) = 
Bp(T - TO), is employed, equation (1) becomes 

- @/3z - pg = - Sp’@z + g/lp(T - T,,). (2) 

In equation (2) the buoyancy force gPp(T - T,) is 
readily identified, while Sp’/Pz is the gradient of a 
reduced pressure. 

Equation (2) is then substituted into the z- 
momentum equation, whereafter the assumption of 
negligible fluid property variations is invoked for all 
the governing equations, which include the continuity 
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equation, the r and z momentum equations, and the 
energy equation. These equations are then made 
dimensionless via the definitions 

U = VzD/v, V = V,D/v, P = p’(pv’/D’), (3) 

0 = (T - T,,)/( T, - T,), R = r/D, Z = z/D, (4) 

Ra = (g/?(T, - T,,)D3/v2)Pr, Pr = c&k. (5) 

The dimensionless conservation equations then 
emerge as 

a(RV)/dR + a(RU)/aZ = 0, (6) 

u(av/az)+ v(av/aR)= -aPpR +vzv- (vIR~), 

(7) 

u(aujaz)+ v(au/aR) 
= -aP/aZ + B(Ra/Pr) + V’U, (8) 

u(ae/az) + v(ae/aR) = (i/Pry28 (9) 

where V2 is the R, Z Laplace operator. The essential 
character of these equations has not been changed by 
the transformation of variables-they remain partial 
differential equations. The two dimensionless para- 
meters that have emerged are Ra and Pr. 

The other parameters follow from the specification 
of the enclosure geometry and of the velocity of the 
throughflow stream. For the geometry specification, it 
is necessary to give the values of 

d/D and H/D. (10) 

The inlet velocity of the throughflow will be assumed 
uniform and equal to P,. Correspondingly, the 
dimensionless inlet velocity Ui is vzD/v, which can be 
written as 

Ui = (Dfd)Re, Re = vzdJv (11) 

where Re is the Reynolds number of the throughflow. 
By specifying Re and (d/D), the dimensionless inlet 
velocity Ui is fixed. 

The statement of the governing equations and the 
dimensionless parameters is now complete. Attention 
will now be turned to the procedure used to solve the 
equations. 

Solution methodology 

As noted earlier, the recirculating nature of the flow 
causes the problem to be elliptic and therefore an 
elliptic finite-difference method was used for the 
solutions. The specific method was that of Patankar, 
which is described in a book-length exposition [l], so 
little elaboration is needed here. The method works 
with the so-called primitive variables (velocities, 
pressure, and temperature) rather than with derived 
variables such as the stream function and vorticity. A 
special feature of the method is that the grid points at 
which the velocity components are computed are 
displaced from those at which the pressure and 
temperature are computed. In such a staggered grid 
arrangement, the pressure difference between two 
adjacent grid points serves as the driving force for the 

velocity component located between these two grid 
points, which would not be true if the grids were not 
staggered. The staggering also leads to a more rational 
finite-difference form of the continuity equation. 

The boundary conditions that were employed in 
conjunction with the finite-difference code will now be 
described. On all solid boundaries, the velocity com- 
ponents U and V are zero and the temperature 0 = 1, 
while on the centerline of the enclosure (a symmetry 
line), V = aUjaR = a6faR = 0. The inflow boundary 
(i.e. the aperture through which the flow enters the 
enclosure) is characterized by the conditions U = 
(D/d)Re, V = 0 = 0. 

It remains to specify the conditions at the outflow 
boundary (i.e. the aperture through which the flow 
exits the enclosure). Except for very simple pr’oblems, it 
is a general truism that the conditions at an outflow 
boundary are not known to a high dC&ee of precision. 
Indeed, precise knowledge of the happenings at an 
outflow boundary can usually be obtained only by 
solving for the flow and temperature fields in the region 
downstream of the boundary, a task that is normally 
beyond the scope of the problem being considered. In 
view of this state of affairs, a common practice is to 
impose simple conditions at the outflow boundary and 
to structure the grid so that the impact of the selected 
conditions does not penetratevery far into the solution 
domain. 

In the present problem, a heavy concentration of 
grid points was deployed in the neighborhood of the 
outflow boundary, with the immediately adjacent 
points being displaced from the boundary by a dimen- 
sionless distance of 0.0025 (the range of Z is from 0 
to 1). The presence of this grid point concentration 
enabled thevelocity and temperature fields to shuck off 
the influence of the outflow boundary conditions 
within a small distance from the boundary. 

The outflow boundary qnditions were as follows 

v = aelai = 0, (12) 

U(R,Z,) = U(R, (Z, - AZ)) + constant (13) 

where Z, is the Z coordinate of the outflow boundary 
and (Z, - AZ) is the Z coordinate of the boundary- 
adjacent grid points. The numerical value of the 
constant was found by satisfying global mass 
conservation. 

A 31 x 3 1 grid was used for the numerical solutions, 
with the grid layout being tailored to the specifics of 
the velocity field. T’he tailoring was performed on the 
basis of preliminary computer runs. In the R direction, 
the points were more heavily concentrated across the 
throughflow stream and adjacent to the outer wall of 
the enclosure. In the Z direction, the heaviest con- 
centration of points was positioned adjacent to the 
upper boundary (including the outflow boundary), 
with a lesser concentration adjacent to the lower 
boundary. 

The attainment of convergence is a commonly 
encountered difficulty in natural convection enclosure 
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(a) Re=lOO, Ra=-10° T (b) Re=lOO, Ra=O q 

FIG. 2. Streamline maps for Re = 100, with Ra = - lo6 and 0. The curve parameter is Il//vD. 
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(a) Re= 100, Ra=104 * (b) Re=lOO, Ra=105 * 

FIG. 3. Streamline maps for Re = 100, with Ru = lo4 and 10’. The curve parameter is Il//vD. 
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problems. As an aid to convergence, the various 
Rayleigh number cases for a given Reynolds number 
were computed successively, starting with Ra = 0 and 
proceeding to higher values of 1 Ra 1. The converged 
output for a given Rayleigh number was used as input 
for the next Rayleigh number. 

for documenting the evolving flow pattern. 
In each graph, the throughflow stream is seen to 

enter at the lower right and exit at the upper right. The 
symmetry line of the enclosure forms the right-hand 
boundary of each graph. The respective graphs are 
arranged in the order of increasing Rayleigh number. 

Underrelaxation of U, V, and @ was employed to 
avoid divergence. For /Ra/ I 104, the computations 
were started with an underrelaxation factor of 0.5, and 
this was increased in successive steps to a terminal 
value of 0.9 based on visual observation of the print-out 
of a convergence index. For the higher Rayleigh 
numbers, the initial relaxation factor was either 0.2 or 
0.3, which was stepped up to a final value of 0.9. 

Presentation parameters 

The flow pattern within the enclosure will be 
displayed in streamline maps, while the temperature 
field will be presented in isotherm contour diagrams. 
In both instances, dimensionless variables are used, 
respectively 

Initial consideration will be given to the results for 
Re = 100 and, as a point of departure, attention will be 
focused on the case of pure forced convection (Ra = 0) 
which is depicted in the right-hand graph of Fig. 2. As 
seen in the graph, the throughflow stream passes 
through the enclosure as a tight bundle, spreading only 
slightly as it moves upward. Just upstream of the exit 
aperture, the stream contracts in order to accom- 
modate to the aperture diameter. The throughflow 
induces a large recirculating eddy in which the flow 
moves radially outward near the top of the enclosure, 
downward along the side (vertical) wall, and inward 
near the bottom wall. These directions are noteworthy, 
especially that along the vertical wall, because they can 
be compared with the expected directions of motion of 
a natural-convection-induced flow. 

$jvD and (T - T&‘(T, - To). (14) 

With regard to heat transfer, results will be pre- 
sented for the distributions of the local heat flux on 
each wall of the enclosure, for the surface-integrated 
heat transfer rate at each wall, and for the overall heat 
transfer rate for all the walls. The dimensionless forms 
to be used in reporting these quantities are 

qD/k(T, - To) and Q/kD(T, - To). (15) 

RESULTS AND DISCUSSION 

As noted in the Introduction, attention will be 

When T, -c To, the resulting buoyancy will induce a 
downflow along the vertical wall of the enclosure. Such 
a flow will reinforce the recirculating eddy that is 
driven by the throughflow. Therefore, for Ra < 0, 
which corresponds to T, < To, the flow pattern for Ra 
= 0 should be preserved, but with higher recirculation 
velocities. An examination of the left-hand graph of 
Fig. 2, which corresponds to Ra = - 106, affirms this 
expectation. The results for Rayleigh numbers between 
0 and - 10“ lie between those shown in Fig. 2. 

focused here on the effects of the fluid flow parameters 
Re and Ra for a fixed enclosure geometry. In selecting 
the geometry, it appeared most reasonable to work 
with a square-like enclosure, i.e. H/D = 1. Also, since 
the apertures that are encountered in practice are small 
compared with the surface area of the enclosure, the 
d/D ratio was chosen to be 0.1. 

For the situation in which T, > T,(Ra > 0), the 
buoyancy tends to induce an upflow along the vertical 
wall, which opposes the throughflow-driven recircu- 
lation. However, there is a range of Rayleigh numbers 
where the buoyancy is too weak to materially affect the 
flow pattern. Thus, as seen in the left-hand diagram of 
Fig. 3, the flow pattern for Ra = lo4 is virtually 
identical to that for Ra = 0 (note that the indicated 
streamline values are the same for the two cases). 

The assumption of laminar flow and the recognition 
that jet-like flows (the through~ow stream has a jet- 

At Rayleigh numbers higher than 104, the buoyancy 

like character) are relatively unstable suggests that 
progressively plays a stronger and stronger role. At Ra 

parametrically assigned Reynolds numbers, in order to 
= 105, as seen in the right-hand graph of Fig. 3, it 

be realistic, should be small. Correspondingly, Rey 
overpowers the throughflow-driven recirculation in 
the outer reaches of the enclosure, with the result that 

nolds numbers equal to 100 and 2.50 were employed 

in the calculations. For each Reynolds number, the 
the flow adjacent to the outer wall is vertically upward. 
However, the buoyancy is still not able to dominate the 

Rayleigh number wasvaried systematically from - lo6 
to 106, with 11 Ra values used for Re = 100 and 12 Ra 

entire flow field in the enclosure. Instead, there are co- 

values for Re = 250. For all cases, Pr = 0.7. 
existing side-by-side eddies, one driven by the buoy- 
ancy and the other driven by the throughflow. 

Streamline maps showing the patterns of fluid flow 
in the enclosure are presented in Figs. 2-4 for Re = 
100 and in Figs. 5 and 6 for Re = 250. Each figure 
conveys results for two Rayleigh numbers in a side-by- 
side presentation. These streamline maps, six for Re = 
100 and four for Re = 250, taken from a larger 

available set, were judged to be the minimum number 

At Ra = 2 x lo5 (left-hand diagram, Fig. 4), the 
buoyancy really begins to influence the results. It 
draws a portion of the throughflow stream to the outer 
wall via a circuitous path that skirts the fringes of the 
much-diminished inner eddy. When the thus-displaced 
portion of the throughflow stream arrives at the outer 
wall, it is propelIed upward along the wall and then, 
near the top of the enclosure. it moves radially inward 
and exits via the aperture. 
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I/i I 

(a)Re=100.Ra=2x105 4 (b) Re=100,Ra=106 4 

FIG. 4. Streamline maps for Re = 100, with Ru = 2 x lo5 and 106. The curve parameter is (i//vD. 
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(a) Re=250, Ra=-lo6 4 W Re=250, Ra=105 

5. Streamline maps for Re = 250, with Ru = - lo6 and 10’. The curve parameter is $/vD. 
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The buoyancy attains full mastery of the flow in the 
enclosure at Ra = lo6 (right-hand diagram, Fig. 4). AS 

seen there, the entirety of the throughflow stream is 
drawn toward the outer wall and remains in the outer 
reaches of the enclosure during most of its passage. 

The foregoing chronicle of the evolution of the flow 
in the enclosure suggests a number of heat transfer 
ramifications. Relative to the overall heat transfer for 
Ra = 0, it is expected that negative Rayleigh numbers 
would yield enhancement, while small and inter- 
mediate positive Rayleigh numbers should bring about 
a reduction in heat transfer. At large positive Rayleigh 
numbers, where the entire throughflow stream is 
drawn to the outer wall, significant enhancement may 
be expected. These conjectures will be revisited shortly 

when a tabulation of heat transfer results is presented. 
Attention will now be turned to the flow patterns for 

Re = 250, which are portrayed in Figs. 5 and 6. In view 
of the higher value of the Reynolds number now being 
considered (250 compared to loO), it is to be expected 
that lesser buoyancy effects will be encountered over 
the investigated Rayleigh number range, - lo6 to 106. 
Thus, in Fig. 5, it is seen that the flow pattern is hardly 
affected by the Rayleigh number in the range from 
- lo6 to 10’. At Ra = 2 x lo5 (Fig. 6, left-hand 

graph), the buoyancy is able to create a small eddy with 
a wall-adjacent upflow but, clearly, the throughflow- 
driven recirculation still holds sway. At Ra = lo6 
(right-hand graph), the buoyancy-induced eddy has 
grown significantly and is now the dominant re- 

(a) Re=250,Ra=2x105 4 (b) Re=250,Ra=106 

circulation in the enclosure. The throughflow stream, 

however, still remains intact, which is in sharp contrast 
to the annihilation of the stream in evidence in the 

right-hand diagram of Fig. 4. 
Based on these flow patterns, it can be expected that 

the heat transfer results for Re = 250 will be much less 
affected by the Rayleigh number than will the results 
for Re = 100. 

Temperature jield 

Representative temperature field information, ex- 
pressed in terms of contours of the dimensionless 

temperature 0, is presented in Figs. 7 and 8 for Re = 
100 and in Fig. 9 for Re = 250. In each figure, there are 

two graphs, each for a different Rayleigh number. In 
interpreting these graphs, it is well to recall that 0 = 1 
at the walls of the enclosure and 0 = 0 in the entering 
flow. 

In Fig. 7, it is seen that the temperature fields for 
Rayleigh numbers between - lo6 and lo4 are of the 
same character. Significant temperature variations are 

confined to the throughflow stream, while the steepest 
gradients occur adjacent to the upper wall, signaling 
relatively high rates of heat transfer. The remainder of 

the enclosure is nearly isothermal with slightly greater 
uniformity for Ra = - lo6 than for Ra = 104. The 
temperature rise (or drop) sustained by the through- 
flow stream during its passage through the enclosure 

is clearly in evidence in Fig. 7. 
When the buoyancy forces first begin to draw the 

FIG. 6. Streamline maps for Re = 250, with Ra = 2 x lo5 and 106. The curve parameter is cjl/vD. 
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throughflow stream into the enclosure proper, the 
radial temperature variations, formerly confined to the 
core of the enclosure, penetrate out farther (Fig. 8, left- 
hand graph). Also a zone of steep axial gradients 
begins to develop adjacent to the lower wall owing to 
the passage of the throughflow stream in that neigh- 
borhood. When the buoyancy has annihilated the 
throughflow stream (right-hand graph), thermal strati- 
fication occurs in the upper portion of the enclosure. 
Steep temperature gradients exist near the lower wall 
and moderate temperature variations occur in the 
remnant of the throughflow stream. The region of 
highest wall heat flux is, clearly, adjacent to the lower 
wall. 

The two isotherm maps in Fig. 9 for Re = 250 
correspond to Ra = - lo6 and 106. The former reflects 
the full dominance of the throughflow-driven re- 
circulation, with significant temperature variations 
confined to the throughflow stream and steep gradi- 
ents in evidence adjacent to the upper wall. On the 
other hand, the latter corresponds to a buoyancy- 
driven recirculation zone occupying the enclosure, and 
the direction of this recirculation is just opposite to 
that of the aforementioned eddy that was driven by the 
throughflow. Thus, the bulges and steep gradients 
which are in evidence near the upper wall in the left- 
hand diagram of Fig. 9 occur near the lower wall in the 
right-hand diagram. 

Surface-integrated heat transfer results 

A listing of the surface-integrated heat transfer rates 
for the individual surfaces of the enclosure and for the 
enclosure as a whole is presented in Tables 1 and 2 
respectively for Re = 100 and 250. In each table, there 
are successive columns for the lower, side, and upper 
surfaces and for the total heat transfer rate. The last 
column of the table is a ratio which shows the effect of 
the Rayleigh number on the total heat transfer rate. 
The numerator Q, is the total heat transfer rate for Ra 
# 0, while the denominator Q,,, corresponds to Ra = 0 
(pure forced convection). Values of Q,/QtO > 1 signal 
heat transfer enhancement due to natural convection 
effects while Q,/Q,e < 1 indicates a natural-convection 
related reduction. The upper part of each table conveys 
information for Ra 2 0, while the lower part is for 
Ra < 0. 

Attention will first be turned to Table 1 and, 
specifically, to the results for positive Rayleigh num- 
bers. From the table, it is seen that both the lower- and 
upper-surface heat transfer rates show regular trends 
with increasing Rayleigh number while the side wall 
displays a somewhat irregular pattern. These be- 
haviors are readily understood with the aid of the flow 
and temperature field results which were presented 
earlier. 

At low and intermediate Rayleigh numbers, where 

(a) Re=lOO,Ra=-IO6 

T- 

.6 

r 

(b) Re= 100, Ra=O, lo4 4 

Fro. 7. Isotherm maps for Re = 100, with Ra = - lo6 and C104. The curve parameter is 0 = (T - T,)/ 
(T, - 7-o). 
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(a) Re = 100, Ra= 2x105 + 

FIG. 8. Isotherm maps for Re = 100, with Ra = 2 x 

(a) Re=250, Ra=-106 

(b) Re= 100, Ra=106 4 

10’ and 106. The curve oarameter is 0 = (T - T,)/ 

4 

1 

(b)Re=250.Ra=10s 4 

FIG. 9. Isotherm maps for Re = 250, with Ra = - lo6 and 106. The curve parameter is 0 = (7’ - T,)/ 
(T, - T,). 
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Table 1. Surface-integrated heat transfer results, 
QWV, - ToI 

Re=lOO 

Ra Lower Side Upper Total QJQto 

0 0.178 0.449 1.078 1.705 
10’ 0.178 0.449 1.078 1.705 l.OQO 
lo4 0.183 0.446 1.071 1.700 0.997 
lo5 0.449 0.452 0.688 1.589 0.932 

2 X lo5 1.030 0.770 0.163 1.963 1.151 
5 X lo5 1.671 1.034 0.0232 2.728 1.600 

lo6 1.888 0.839 0.117 2.739 1.606 

0 0.178 0.449 1.078 1.705 
- lo3 0.178 0.449 1.078 1.705 1.000 
-lo4 0.174 0.452 1.084 1.710 1.003 
-105 0.155 0.462 1.112 1.729 1.014 
-lob 0.116 0.456 1.162 1.734 1.017 

the enclosure is filled with a recirculation zone that is 
driven by the throughflow stream, the highest rates of 
heat transfer occur on the upper surface, with lesser 
transfers at the other surfaces. This distribution is 
consistent with the direction of the recirculation, 
whereby the recirculating fluid successively washes the 
upper, side, and lower walls. The buoyancy-induced 
opposition to this flow pattern is reflected in a modest 

decrease in the upper- and side-wall heat transfer and 
an increase in the lower-wall heat transfer (see table 
entry for Ra = 104). When the buoyancy is strong 
enough to create an oppositely directed recirculation 
zone in the outer portion of the enclosure (Ra = 105), 
the respective increases and decreases at the lower and 
upper walls become more marked. 

The deflection of the throughflow stream along the 
lower and side walls which occurs at higher Rayleigh 
numbers (Ra = 2 x 10’ and 5 x 105) results in major 

heat transfer increases at both these walls, at the 
expense of a sharp decrease at the upper wall. These 
trends continue at Ra = 106, but there is a reduction at 
the side wall which is believed to result from the 
incipient thermal saturation of the flow, which ex- 
periences high rates of heat transfer at the lower wall 
before it encounters the side wall. Furthermore, at the 
high Rayleigh numbers, the upper wall has essentially 
ceased to transfer heat. 

With regard to the total heat transfer, it is seen to 
suffer a reduction when the buoyancy plays an oppo- 
sition role to a dominant throughflow-driven eddy. 
Once the natural convection has won control of the 
flow field in the enclosure, there is a marked increase in 

the heat transfer, which tends to level off at the highest 
Rayleigh number investigated. 

The lower portion of Table 1, which pertains to 
Ra 5 0, will now be examined. Negative-Rayleigh- 
number buoyancy tends to reinforce the throughflow- 
driven recirculation, but with only modest effects on 
the flow field in the investigated range of Ra (Fig. 2). 
Correspondingly, the ranking of the upper wall as the 
primary heat transfer surface is maintained and even 
moderately enhanced. With increasing magnitude of 
- Ra, the lower wall progressively transfers less heat 

while the upper wall transfers more heat ; the side wall 
experiences an indecisive fluctuation. The net effect on 
the total heat transfer is a variation of less than 2% over 
the investigated range of Ra 2 0. 

Attention will next be turned to the results for Re = 
250 which are displayed in Table 2, with first con- 
sideration given to Ra 2 0. For this higher Reynolds 
number, there is a greater range of Rayleigh numbers 
where the buoyancy plays an opposition role with 
respect to a dominant throughflow-driven recircu- 
lation. This is reflected, for example, by the total heat 
transfer, which declines as Ra increases from 0 to 5 x 
lo5 and then recovers at Ra = lo6 as the buoyancy 
establishes a strong eddy in the outer portion of the 

enclosure. At still higher Rayleigh numbers, buoyancy 
builds up and QJQ,e ratios above unity are to be 
expected. The side-wall heat transfer also declines with 

Ra until the buoyancy strongly asserts itself, with a 
subsequent increase. At the lower and upper walls, the 
respective trends of increase and decline, already 
evidenced in Table 1, continue in force, as they should. 

The lower part of Table 2 reaffirms the main findings 
already encountered in Table 1 for Re I 0. There are 
some differences in detail, but the total heat transfer 

demonstrates the same insensitivity to Rayleigh 
number. 

From an overview ofTables 1 and 2, it is evident that 
a first-impressions prediction of the enhancing or 
degrading effect of natural convection on the forced- 
convection heat transfer may be erroneous. Based on 
experience with simple vertical-plate boundary layer 
flows, it would be expected that the buoyancy as- 
sociated with T, > T, (Ra > 0) would enhance a 
forced-convection upflow. Such an enhancement does 
occur in the present enclosure problem at sufficiently 
high Rayleigh numbers, but only beyond a threshold 
Rayleigh number (which depends on the magnitude of 
the Reynolds number), below which the enclosure heat 
transfer is reduced by the buoyancy. Another some- 
what surprising finding from the tables is the near 

independence of the enclosure heat transfer from the 
Rayleigh number when T, < T,. 

Table 2. Surface-integrated heat transfer results 

QFW, - ToI 

Re = 250 

Ra Lower Side Upper Total QJQm 

0 0.113 0.635 2.020 2.768 
10’ 0.113 0.635 2.020 2.768 1.000 
lo4 0.114 0.631 2.020 2.765 0.999 
IO5 0.129 0.591 2.017 2.737 0.989 

2 X 105 0.173 0.512 1.995 2.680 0.968 
3 X 105 0.342 0.358 1.869 2.569 0.928 
5 x lo5 0.691 0.399 1.338 2.428 0.877 

lo6 1.301 0.741 0.462 2.504 0.905 

0 0.113 0.635 2.020 2.768 
- lo3 0.113 0.638 2.020 2.771 1.001 
-lo4 0.112 0.638 2.020 2.770 1.001 
-105 0.105 0.663 2.020 2.788 1.007 
- lo6 0.0892 0.729 2.023 2.841 1.026 

_ 
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r/D 

FIG. 10. Distributions of the local heat flux along the upper and lower walls of the enclosure, Re = 100. 

Local heat transfer distributions 

Distributions of the local rate of heat transfer per 

unit area along the upper and lower walls of the 
enclosure are presented in Fig. 10 for Re = 100, while 
Fig. 11 conveys the distributions for the side wall. A 
corresponding presentation for Re = 250 is made in 

Figs. 12 and 13. In these figures, a dimensionless heat 
flux group qD/k(T, - TO) is plotted as a function of 
either r/D or z/D, with thecoordinates being illustrated 

in the right-hand diagram of Fig. 1. The curves are 
parameterized by the Rayleigh number, which extends 
over both positive and negative values. Owing to 
crowding and overlap among the curves, it is not 
possible to include results for all the investigated 
Rayleigh numbers in Figs. 10-13, but those appearing 

in the figures are representative. 
From Fig. 10, it is seen that the distribution 

curves for the lower wall are arranged in ascending 
order with increasing Rayleigh number while those for 
the upper wall are in descending order. These order- 
ings are the same as those of the surface-integrated 
heat transfer that were identified in connection with 
Table 1, and the explanations that were set forth there 
are equally applicable here. 

With regard to the spatialvariations of the heat flux, 
Fig. 10 shows that the highest values at both the upper 
and lower walls are attained at the innermost radius, 
from which point the flux decreases as the radial 
coordinate increases. The radial decrease is monotonic 
at the upper wall for all Rayleigh numbers, despite the 
fact that the direction of the recirculation reverses over 

the investigated range of Rayleigh number. The mono- 
tonic behavior is related to the fact that the boundary 
layer thickness increases in the radially outward 
direction for both the clockwise and counterclockwise 
recirculation patterns. At the lower wall, the radial 

decrease of the flux is also monotonic for negative and 
for positive Rayleigh numbers up to 2 x 10’. However, 
for higher Rayleigh numbers, there is a local maximum 
in the flux at an intermediate radial station. As can be 
seen from Fig. 4, this behavior is due to the re- 

attachment of the deflected throughflow stream on the 
lower wall. 

Figure 11 conveys the local heat flux distributions 
along the side wall. The striking characteristic of these 
distributions is the shift of the maximum heat flux from 
the upper portion of the wall to the lower portion of the 

wall as the Rayleigh number increases. This shift is 
directly related to the reversal of the direction of the 
recirculating motion which accompanies the tran- 
sition from throughflow dominance to buoyancy 
dominance. The very low heat flux adjacent to the 
corners z/D = 0 and 1 is due to the very low velocities 

that prevail in those regions. 
The local heat transfer results for the upper and 

lower walls for Re = 250, shown in Fig. 12, display 
characteristics similar to those already discussed for 
the case of Re = 100 in connection with Fig. 10. The 
main difference between the two sets of results is the 
lesser influence of natural convection. Thus, for ex- 
ample, the local maximum in the lower-wall heat flux 
distribution for Ra = lo6 is much less pronounced 
when Re = 250 than when Re = 100. Also, the upper- 
wall heat flux distribution for Ra = lo6 is clearly in 
view when Re = 250 but has dropped out of sight for 
Re = 100. 

The side-wall heat transfer distributions for Re = 

250 (Fig. 13) also resemble those for Re = 100 (Fig. 
11). However, for the former, there is a higher con- 
centration of curve peaks in the upper portion of the 
wall. This behavior is due to the dominance of the 
throughflow-driven recirculation over a larger range of 
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FIG 11. Distributions of the local heat Rux along the side wall of the enclosure, Re = 100. 

SIDE WALL 

Rayleigh numbers for Re = 250 than for Re = 100. 

CONCLUDING REMARKS 

The solutions presented here have set forth a 
succession of complex interactions between a through- 
flow stream passing through a vertical cylindrical 
enclosure and the buoyancy-induced motions within 
the enclosure which result from temperature 

differences between the entering stream and the en- 
closure walls. These interactions have a major in- 
fluence on the heat transfer at the walls of the 

enclosure. 

UPPER 
WALL 

FIG 12. Distributions of the local heat flux along the upper and lower walls of the enclosure, Re = 250 

In the absence of buoyancy (i.e. zero Rayleigh 
number), the throughflow induces a large recirculating 
eddy in which the flow moves radially outward 
adjacent to the upper wall of the enclosure, downward 
along the side wall, and radially inward adjacent to the 
lower wall. Positive-Rayleigh-number natural con- 
vection (T, > T,) tends to induce a reversed direction 
for the recirculation. At small and intermediate Ray- 
leigh numbers, the throughtlow-driven recirculation is 
dominant, and the natural convection plays the role of 
a weaker opponent. As the Rayleigh number increases, 
a buoyancy-driven eddy is formed in the outer portion 

LOWER WALL 

Ra q 

r/D 
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SIDE WALL 

FIG. 13. Distributions of the local heat flux along the side wall of the enclosure, Re = 250. 

of the enclosure, and this eddy grows and ultimately 
dominates the recirculating motion. At still higher 

Rayleigh numbers, the buoyancy draws the through- 
flow stream outward along the lower wall and 

propels it upward along the side wall-thereby signall- 
ing the full dominance of the natural convection. In 
contrast, negative-Rayleigh-number natural convec- 
tion (7” < TO) reinforces the throughflow-driven 
recirculation, and the flow field in the enclosure is 

essentially unchanged from that without natural 
convection. 

The temperature distributions within the enclosure 

show that the regions of large temperature gradients 
shift from the upper wall to the lower wall as the 
direction of the recirculation reverses owing to the 
transition from throughflow dominance to natural- 
convection dominance. 

These events are reflected in both the local and 
surface-integrated heat transfer results. For positive 

Rayleigh numbers, the upper-wall heat transfer de- 
creases as the Rayleigh number increases, with an 
opposite trend at the lower wall. At the side wall, there 
is an initial decrease in the heat transfer followed by an 
increase which, at sufficiently high Rayleigh numbers, 
may be followed by another decrease. 

The surface-integrated heat transfer rate for the 

enclosure as a whole decreases as the Rayleigh number 
increases from zero, attains a minimum, and then 
increases. When the buoyancy is fully dominant (for 
positive Rayleigh numbers), the heat transfer is sub- 
stantially larger than that for the buoyancy-free flow. 
For negative Rayleigh numbers, the heat transfer is 
very little different from that for zero Rayleigh number. 
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INTERACTION DANS UNE ENCEINTE ENTRE UN ECOULEMENT FORCE ET LA 
CONVECTION NATURELLE 

R&urn&On analyse l’ecoulement et le transfert thermique dans une enceinte cyhndrique verticale avec les 
parois inferieure et superieure perches dun petit trou par lequel le fluide entre et sort. Un ecoulement de 
recirculation est induit par cette traversee en m&me temps que par la convection naturelle due a la difference 
de temperature entre le fluide et les parois de I’enceinte. Les parametres caracteristiques sont les nombres de 
Reynolds et de Rayleigh, le demier pouvant dtre positif ou negatif selon que la temperature de la paroi T, 
depasse ou non la temperature d’entree du fluide T,. Le courant force &ant vertical ascendant, un nombre de 
Rayleigh positif (T, > T,) s’oppose a la recirculation due au courant force et il y a reduction du transfert 
thermique dans le domaine des nombres de Rayleigh faibles et moyens. Aux grands nombres de Rayleigh, 
I’tcoulement est aide par la convection naturelle et il en rest&e de grandes valeurs de transfert thermique. 
Pour les nombres de Rayleigh negatifs (T, > T,), le transfert thermique est peu different du cas oti le nombre 

de Rayleigh est nul. 
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WECHSELWIRKUNG ZWISCHEN EINER STRC)MUNG, DIE DURCH EINEN HOHLRAUM 
FLIESST, UND FREIER KONVEKTION INNERHALB DES HOHLRAUMS 

Zusammenfassung-Es wurde eine Untersuchung titer die FluidstrGmung und den Wtirmetransport in 
einem vertikalen zylindrischen Hohlraum, in welchem das Fluid durch kleine C)ITnungen am Boden und 
Deckel ein- bzw. ausstr6mt, durchgefiihrt. Die Durchgangs-Striimung erzeugt eine Rezirkulation in dem 
Raum. Weiterhin entstehen Bewegungen durch freie Konvektion infolge der Temperaturdifferenz zwischen 
einstriimenden Fluid und den Hohlraumwlnden. Die Stlrke der erzwungenen und freien KonvektionsstrG- 
mungen werden jeweils durch die entsprechenden Reynolds- und Rayleigh-Zahlen heschriehen, wohei 
letztere entweder positiv oder negativ sein k%nen, je nachdem die Wandtemperatur T, die Fluideintritts- 
temperatur T, iihersteigt oder nicht. 1st die durchflieBende StrGmung vertikal nach ohen gerichtet und ist 
eine positive Rayleigh-Zahl vorhanden (d.h. T, > T,), da& wirkt die freie Konvektion der durchfluC%e- 
dingten Rezirkulation entegen und verringert den WPrmeiibergang im Bereich kleiner und mittlerer 
Rayleigh-Zahlen. Fiir groPe Rayleigh-Zahlen iiherwiegt der EinfluB der freien Konvektion, und es ergeben 
sich hohe W&rmeiihergangszahlen. Fiir negative Rayleigh-Zahlen (d.h. T, < T,) unterscheidet sich der 

WLrmeiihergang nur wenig von dem Fall mit der Rayleigh-Zahl Null. 

B3AMMOflEfiCXBME MEWAY IIOTOKOM, IIPOXO~III.lJMM YEPE3 IIOJlOCTb, 
M ECTECTBEHHOR KOHBEKIJMER BHYTPM HEE 

AaaoTaum-IlpoaeneH aHanB3 TeYeHw xuin~ocw H TennonepeHoca a BepTeranbeo pacnonomeseofi 
LWMHApWXCKOfi IIOJIOCTA, B H&iXWeti I4 BepXHefi CTeHKaX KOTOpOii WMeIOTCII He6onbmee OTBepCT,,R, 

'iepC3 KOTOpbIc BTeKaeT U BbITeKaeT EHAKOCTL. CKBOSHOe TeqeHIie Bbl3blBaeT peUHpKy,I!ULGO 

XWLIKOCTB B nOJIOCTH. KpoMe TOrO, B Hcti BO3HI(KaMT CCTeCTBeHHOKOHBeKTABHble TeYeHWI R3-3a 

pa3HOCTH TeMnepaTyp MemAy nOCTyrIaloUHM nOfOKOM A CTCHKBMW. MHTeHWBHOCTb BbIHyZWeHHOji 

H eCTeCTBeHHOi% KOHBeKL,I(A XapaKTepH3yeTCSI COOTBeTCTBeHHO 'IUCJIaMN Pei-SHOnbAGl ,4 PeJIeR, rIpENeM 

nOCJIeAHee MOmeT 6bITb rIOJIOXGiTeJlbHbIM HJIH O~p~I&l~c,IbHbIM B 3aBACEiMOCW OT TOrO BbIme HJIW 

HmKe TeMnepaTypa cTeHKH T, reMnepaTypbr x~nn~ocrn Ha sxone To. B cnysae, Korna c~pyr 

HanpaBneHa Bepwranbso eaepx, ecTecrBeHHas KoHBeKmix npe nonowrTenbHoM wcne Penen (T.e. 
npk, T,> r,) yMeHbI"aeT BbI3bIBaeMylo nOTOKOM ~IUl,,K,‘,M,HlO H CHAXWX’ ~erI,IOnepeHOC B 

neanasoee He6OJIbLWX H cpenHItx 3Haqemifi wcna Penen. npe 6onbmax wicnax Pener crpyfiHoe 

-reqeHue ycenaBaeTcn 3a cqe-r ecTecTBeHHok KoHBeKuwi, B pe3ynbTare 4ero yeenawsae~cn -renno- 
nepesoc. npki O-rpuuaTenbHbIx 3Ha-ieHwIx wcna Penea (T.e. npa T,< r,) TennonepeHoc n0q-w 

TaKOii XC, KIK M Up&3 HYJEBOM ‘,HC,,e kJIC,,. 


